

Elektronite
presents

Intellivision

White Papers

Paper #2

Programming the
Intellivision I

Get started with the CP1610

Version 1.0

[Authors]

Valter Prette

Joseph Zbiciack

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 2

Contents

Introduction ... 2
CP1610 general overview ... 3
Registers.. 3
Addressing modes .. 4
The Exec and the JzIntv library .. 6
Appendix: CP1610 Instruction tables .. 7

Introduction

Welcome to the first Intellivision programming lesson.
This white paper is intended for people who do not know much about this platform
and want to learn writing applications for it.
We hope that you find this documentation useful and that you get involved in the
exciting Intellivision homebrew community.

Developing software for Intellivision means to write assembler code for a CP1610
based hardware.
Before to study the language itself, you need to learn the basics of the hardware to
understand why you need to perform a specific action in order to have the result
you’re looking for.
In particular, you need to know how to refer to memory registers, how to pilot the
STIC and how to deal with interrupts.
All those concepts will be introduced step by step during the lessons, to make the
learning process as smooth as possible.
This first lesson will introduce the CP1610 system and the routines that you will use
starting from lesson two.
This document is also intended as reference of the assembly commands available for
the Intellivision platform.

Legal disclaimer:

You’re reading an Elektronite IntyLab White Paper.
This document is based on the SDK1600 documentation written by J. Zbiciack with permission.
Exec info is based on the De Re Intellivision written by W. Moeller.
The document is freely distributable but not modifiable. If you intend to modify or add contents to this
document, please contact vprette@hotmail.com or www.elektronite.com to let us integrate your
contribution in a new release version for the interest of all the collectors worldwide.

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 3

CP1610 general overview

The CP-1600 provides what's known as Von Neumann style computer architecture.
That means a Central Processing Unit which is connected by a single bus to several
memories and peripherals. In our case, the Central Processing Unit is the CP-1600.
Conceptually, the diagram looks like so:

All of the devices that are outside the CPU appear in a single, unified Address
Space. In our case, addresses are 16-bits wide, and so the address space is 64K
words large.
Programs and data are stored in memory, which the CPU accesses via bus. The
CPU makes no distinction between whether a memory holds program code or data,
so both can be stored in the same memory (but usually at different locations).
Also, memories and peripherals are treated identically, so accesses to "memory" may
go to either RAMs, ROMs, or various peripherals.

Registers

Memory accesses are slow, because they have to go "off chip" for data. As a result,
most operations in the CPU operate on registers. Registers are special memory
locations inside the CPU that are connected directly to the CPU's arithmetic and logic
units. Most of these registers are so-called "General Purpose" registers, although
also many have additional special uses assigned to them.
The CP-1600 has 8 16-bit general purpose registers, named R0 through R7.
Additionally, there is the status word, SWD, which contains the status bits.
You need to become familiar with this nomenclature because the register will appear

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 4

anywhere in the Intellivision assembler code.
The following table describes the registers

 Register Special Purpose

 R0 None
 R1 Data Counter
 R2 Data Counter
 R3 Data Counter
 R4 Auto-incr Data Counter, or JSR Return Address
 R5 Auto-incr Data Counter, or JSR Return Address
 R6 Stack Data Counter, or JSR Return Address
 R7 Program Counter
 SWD Status word: Holds Sign, Zero, Carry, Over bits

In addition to providing access to memory, R4 and R5 auto-increment and R6
behaves as a stack pointer when used as Data Counters.
Registers R4 through R6 also may be used to hold the return-address for a JSR
instruction. JSR acts very similar to BASIC's GOSUB instruction. The return
address may then be saved in memory by your program.

Addressing modes

The CP-1600 offers a wide variety of addressing modes for its instruction set. Some
of these modes operate entirely on registers inside the CPU. Others access
memory, allowing access to RAMs, ROMs, and peripheral devices.
Before launching into a complete description of the modes, let's first look at the
common instruction forms.

Single-operand instructions, such as "INCR", "DECR" and so on work with a single
operand that doubles as both "source" and "destination."
Dual-operand instructions, such as "ADDR" and "SUBR" operate on two operands,
where the first is a "source" and the second is both "source" and "destination."
For example, consider the single operand instruction "INCR Rx" (INCR stands for
"INCrement Register"). Rx acts both as a source (input) and destination (output) for
the instruction.
Now, consider the two-operand instruction "ADDR Rx, Ry" (ADDR stands for "ADD
Registers"). Here, Rx is simply a source operand, and Ry is both a source, and a
destination.

Let’s have a look to the addressing modes now.
The simplest addressing mode is "Implied" mode, in which the instruction operates
on one or more operands that are not directly specified. Instructions which directly
set/clear flags fall into this category.

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 5

Example:

 CLRC ; C = 0 (Clear the carry bit.)

The next simplest addressing mode is "Register" mode, in which the instruction reads
and writes all of its results to registers.
Register mode instructions generally have an "R" as the last letter of their mnemonic,
as in "ADDR", "COMR", etc. "Register" instructions do not access memory.

Examples:

 INCR R0 ; R0 = R0 + 1
 ADDR R1, R2 ; R2 = R2 + R1
 SUBR R3, R4 ; R4 = R4 - R3

"Immediate" mode instructions accept a constant as one of the two operands. These
instructions are always dual-operand instructions, and the first operand is always the
constant, with exception to "MVOI," which writes to its immediate operand.
Immediate mode instructions generally have an "I" as the last letter of the mnemonic,
as in "ADDI".

Examples:

 MVII #$0042, R3 ; R3 = $0042
 XORI #$FF00, R6 ; R6 = R6 XOR $FF00

"Direct" mode instructions specify a fixed memory address from which to read one of
the operands. As with Immediate mode, the first operand is always the direct
operand, except for MVO, which writes a value to the requested address.

Examples:

 MVO R4, $01F1 ; POKE $01F1, R4
 MVI $01F0, R3 ; R3 = PEEK($01F0)
 ADD $02F0, R5 ; R5 = R5 + PEEK($02F0)

"Indirect" mode instructions access memory through a Data Counter register for one
of the operands. The first operand is generally the data counter, with exception to
"MVO@," in which it is the second operand. Except in the case of "MVO@," Indirect
mode instructions read the value at the memory location pointed to by the Data
Counter before performing the instruction.
With "MVO@", the value is written to the desired location. Indirect mode instructions
are generally noted with a "@" at the end of the mnemonic.

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 6

When an Auto-Incrementing Data Counter is used with Indirect mode, the Data
Counter is incremented after the access. This allows loops to step through arrays
very efficiently, since it is not necessary to manually update the Data Counters.

The Stack Data Counter is a special case. When writing, it is incremented after the
access, just as the Auto-Incrementing Data Counters are. When reading, however, it
is decremented before the access, thus providing a simplistic stack. Indirect
addressing via the Stack Data Counter is referred to as "Stack Addressing."

Examples:

 MVO@ R4, R3 ; POKE R3, R4
 MVO@ R3, R4 ; POKE R4, R3 : R4 = R4 + 1 (Auto-incr)
 MVO@ R3, R6 ; POKE R6, R3 : R6 = R6 + 1 (Stack)

 MVI@ R3, R4 ; R4 = PEEK(R3)
 MVI@ R4, R3 ; R3 = PEEK(R4) : R4 = R4 + 1 (Auto-incr)
 MVI@ R6, R3 ; R6 = R6 - 1 : R3 = PEEK(R6) (Stack)

 XOR@ R3, R2 ; R2 = R2 XOR PEEK(R3)

The Exec and the JzIntv library

The whole system is controlled by a 4K program called the Executive (the EXEC)
which resides in the Intellivision Executive ROM chip (with an additional 344 bytes
over in the GROM chip).
In a sense, the exec is the main game program, and the plug-in cartridge merely
contains subroutines and data which are used by the EXEC.
Normally, only EXEC routines access GROM, GRAM and the STIC control registers.
The EXEC contains routines for moving objects around the screen, loading GRAM,
creating sound and music, testing for moving object interaction, etc.
Using the EXEC is the standard solution adopted by early games on the system.
Today the developers have the possibility to use and alternative library of routines
programmed by J. Zbiciack and delivered under GNU license.
The JzIntv library is a user friendly set of functions that cover the EXEC scope and
add some more option to the developer.
That library will be presented in future documentation; from next lesson on, you
would better studying the standard routines.

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 7

Appendix: CP1610 Instruction tables

Those tables summarize all the assembler commands available for programming the
Intellivision CPU.
If you’re not used to assembler, at the moment you may not understand perfectly the
meaning, but you can use the tables as reference for the next programming lessons.

Register To Register

Command Operation Microcycles Comments

MOVR MOVe Register 6/7*
TSTR TeST Register 6/7* MOVR to itself
JR Jump to address in

Register
7 MOVR to PC

ADDR ADD contents of
Registers

6/7*

SUBR SUBtract contents of
Registers

6/7* Results not stored

CMPR CoMPare Registers
by subtr

6/7*

ANDR logical AND Registers 6/7*
XORR eXclusive OR

Registers
6/7*

CLRR CLeaR Register 6/7* XORR with itself

*7 cycles if destination register is R6 or R7, 6 cycles otherwise.

Single Register

Command Operation Microcycles Comments

INCR INCrement Register 6/7*
DECR DECrement Register 6/7*
COMR COMplement Register 6/7* One's

Complement
NEGR NEGate Register 6/7* Two's

Complement
ADCR Add Carry Bit to

Register
6/7*

GSWD Get Status WorD 6/7*
NOP No OPeration 6/7*
SIN Software INterrupt 6/7* Pulse to PCIT pin
RSWD Return Status WorD 6/7*

*7 cycles if destination register is R6 or R7, 6 cycles otherwise.

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 8

Register Shift

Command Operation Microcycles Comments

SWAP SWAP 8-bit bytes 6
SLL Shift Logical Left 6
RLC Rotate Left thru Carry 6
SLLC Shift Logical Left thru

Carry
6

SLR Shift Logical Right 6
SAR Shift Arithmetic Right 6
RRC Rotate Right thru

Carry
6

SARC Shift Arithmetic Right
thru Carry

6

Shift is not interruptible. One or two position shift capability.
Two positions SWAP replicates lower byte in both halves.

Control Instructions

Command Operation Microcycles Comments

HLT HaLT 4 Halts machine
completely

SDBD Set Double Byte Data 4 Must precede
external

EIS Enable Interrupt
System

4

DIS Disable Interrupt
System

4

TCI Terminate Current
Interrupt

4

CLRC CLeaR Carry to zero 4
SETC SET Carry to one 4

Jump Instructions

Command Operation Microcycles Comments

J Jump 12
JE Jump, Enable,

interrupt
12

JD Jump, Disable
interrupt

12

JSR Jump, Save Return 12
JSRE Jump, Save Return &

Enable
12

JSRD Jump, Save Return &
Disable interrupt

12

Return Address
saved in R4, R5 or
R6

Elektronite – IntyLab white paper 02 Programming the Intellivision I

This document is an Elektronite White Paper. The document is freely distributable but not modificable. If you intend to modify or add
contents to this document, please contact Elektronite at www.intellivisionworld.com to let us integrate your contribution in a new release
version for the interest of all the collectors worldwide.

 Page Nº 9

Conditional Branch Instructions

Command Operation Microcycles Comments

B unconditional Branch 9
NOPP NO OPeration 7 Two words
BC Branch on Carry 7* C = 1
BNC Branch on No Carry 7* C = 0
BOV Branch on OVerflow 7* OV = 1
BNOV Branch on No OVerflow 7* OV = 0
BPL Branch on PLus 7* S = 0
BMI Branch on Minus 7* S = 1
BEQ Branch if Not Zero or

Not EQual
7* Z = 1

BNEQ Branch if Not Zero or
Not EQual

7* Z = 1

BLT Branch if Less Than 7* S XOR OV = 1
BGE Branch if Greater than

or Equal
7* S XOR OV = 0

BLE Branch if Less than or
Equal

7* Z OR (S XOR OV)
= 1

BGT Branch if Greater Than 7* Z OR (S XOR OV)
= 0

BUSC Branch if Sign not =
Carry

7* C XOR S = 1

BESC Branch if Sign = Carry 7* C XOR S = 0
BEXT Branch if External

condition is true
7*

* Add 2 cycles if test condition is true

Input/Output

Command Operation Microcycles Comments

MVO MoVe Out 9 or 11 Not interruptible
PSHR PuSH Register to

Stack
9 PSHR = MVO@R6

Not interruptible
MVI MoVe in 8 to 11
PULR PULl from stack to

Register
11 PULR = MVI@R6

Arithmetic & Logic

Command Operation Microcycles Comments

ADD ADD 8 to 11
SUB SUBtract 8 to 11
CMP CoMPare 8 to 11 Result not saved
AND logical AND 8 to 11
XOR eXclusive OR 8 to 11

