ROM Images and Profile (RIP)

Version 1.1
1 Summary

This document covers the details of the ROM Images and Profile file format (RIP) which is defined around the eXtensible Binary Format (XBF).

2 Overview

ROM image files today contain raw dumps of the ROM chips straight from the original game. There is no information within the ROM image describing metadata about the game such as the name of the game from which the ROM was derived or the memory location at which the ROM was originally accessible. Nearly all emulators that use ROM image files require some of this information to be able to successfully map the game into the emulated system and run the game properly. To work around this, many emulators (e.g. MAME) contain an internal database of known ROMs and will only support that list of known ROMs. They derive the extra information necessary to display and use the ROM image file from this internal database. In these emulators, there is little opportunity to develop “home-brew” games or to test newly dumped games since considerable expertise is required to add a new ROM to the emulator’s internal database.

In addition to the limitation described above with ROM image files, each game often requires ROM images from more than one ROM chip from the original game. The entire group of ROM images is required in order to successfully play the game. Today, most emulators allow you to bundle all of the required ROMs for a single game into a zip file in order to keep the ROMs associated with each game grouped together. Zip files have their usefulness, but again the metadata about each ROM is absent from this file format.

This new RIP file format attempts to overcome these problems by providing a mechanism for bundling multiple ROM images together while offering a way to specify metadata about the game and about each individual ROM within the game. This enables emulators to move all metadata out of each emulator’s internal database and into the RIP file containing the ROMs.

It is extremely important to note that the RIP format is not designed for one emulator (Bliss) or even just one group of emulators (Intellivision emulators), but it is instead designed to be used as a potential file format for any emulator of any system.

 ROM Images and Profile (RIP)

As mentioned above, the RIP format is an XBF file format for storing multiple ROM images required for a single game plus additional metadata about the game and ROMs stored in the file such as the name of the game, memory mapping information, and peripheral compatibility indicators. The magic number of the RIP file format is 0x3F383A347651B5DA so these will always be the first 8 bytes of a RIP file. See the documentation on XBF file format for an explanation of magic numbers.

This format is intended to support systems with address spaces and memory widths of up to 128 bits. Most well-known systems emulated today have address spaces of either 16-bits (Atari 5200/Intellivision) or 32-bits (Super Nintendo/Sega Genesis) and memory widths of 8-bits (Atari 5200), 16-bits (Intellivision), or 32-bits (Super Nintendo/Sega Genesis).

2.1 RIP Substructures

The following substructures are specific to the RIP format and are referenced throughout the RIP record format descriptions.

2.1.1 Banking Descriptor

A banking descriptor specifies a memory location and a value that will cause a RAM, ROM, or other specified memory unit to become visible on the memory bus. The banking descriptor is formatted according to the table below.

	Offset
	Size
	Description

	0
	Address
	Target Address

	.
	Address
	Address decoding mask for writes.

	.
	Data
	Reset Value

	.
	Array of Data
	List of values which, when poked into this address, will cause the designated memory unit to become visible.

If more than one banking descriptor is provided for a given memory unit, the following rules should determine when the memory unit is actually visible.

· If only one memory address and value is provided, then that memory address must receive that value before the memory unit becomes visible.

· If one memory address is provided with multiple values, then that memory address must receive any one of the values before the memory unit becomes visible.

· If multiple memory addresses are provided, each with one value, then all memory addresses must receive their associated target value before the memory unit becomes visible.

· If multiple memory addresses are provided, each with multiple values, then all memory addresses must receive any one of their associated target values before the memory unit becomes available

Note that this banking support is defined under the general assumption that it is within the realm of possibility for more than one memory unit to be visible at a given memory location at one point in time. This actually happens in some hardware configurations, and in such a case the memory bus returns a logical combination of the results from the multiple visible memory units. Most emulators do not support this concept, however, and should thus handle the possibility of overlapping memory units however they see fit.

2.1.2 Identifier (ID)

In addition to the Record IDs required as per the XBF specification, Emulator IDs, and System IDs are also referenced throughout this document and, just like Record IDs, these refer to unique 4-byte unsigned integers. If you wish to expand on the list of emulators or systems described in this document, you may feel free to create your own Emulator IDs and System IDs as necessary without adding them to this document, so long as they meet the following conditions.

1. IDs must be unsigned 32-bit integers.

2. IDs must be random.

3. IDs may not consist of any recognizable pattern, such as 0xFAFAFAFA or 0x12345678. If you are using a random-number generator to create your IDs and it generates a number with a recognizable pattern, throw it away and generate a new number.

4. IDs must be unique to the greatest extent as it is possible for you to determine. NEVER intentionally use the same random number for two different IDs. If you are using reasonably random techniques to generate your IDs, the chances of your generating a number already in use are less than the chances that the earth will spiral into the sun sometime before Christmas.

Do not expand on the list of official Record IDs for this file format. The one exception is that if you are an emulator author, you may use your Emulator ID as a Record ID and feel free to put any information you wish inside this record. This is the only additional Record ID you may use that is not specified in this document, and is permissible only as described by the Emulator Record (4.2.3).

2.1.3 Memory Address

A memory address is an unsigned integer of the size necessary to hold one memory address for the target system. For a system with a 16-bit address space, a 2-byte unsigned integer is required. Therefore wherever the substructure type “Address” is used, it represents an unsigned integer of the size of the address space of the target system divided by 8, so for a target system with a 16-bit address space, an Address is a 2-byte unsigned integer.

2.1.4 Data
A data value is an unsigned integer of the size necessary to hold a value at one address for the target system. For a system with an 8-bit memory width, a 1-byte unsigned integer is required. Wherever the substructure type “Data” is used, it represents an unsigned integer of the size of the memory width of the target system divided by 8, so for a target system with a 8-bit address space, a data value is a 1-byte unsigned integer.
2.2 Record Formats

The records are each assigned IDs which will never change and will never be reused.

2.2.1 Header Record (0xFC41466E)

The very first header should always be the header record.

	Offset
	Size
	Description

	0
	2
	Major Version (unsigned 16-bit integer)

	2
	2
	Minor Version (unsigned 16-bit integer)

	4
	4
	Target System ID

The version numbers allow a program to verify that it can expect to find certain data and known record formats within the XBF file. Minor version changes indicate small changes to a file type format that do not break compatibility with previous versions. Major versions indicate changes to the list of required records or changes to the record formats such that the new version is no longer compatible with previous versions.

The Target System ID specifies the target system for which the ROMs contained in this file were originally designed. See Appendix B for a list of known System IDs.

2.2.2 BIOS Image Compatibility (0xC183BF3C)

One or more BIOS Image Compatibility records describe whether each known bios image is preferred, optional, or incompatible. See Appendix C for a list of known bios images associated with each system.

	Offset
	Size
	Description

	0
	4
	BIOS Image ID

	3
	1
	BIOS Compatibility

Only the lower two bits are used

(00=preferred, 01=compatible, 10/11=incompatible)

Preferred BIOS images indicate the preferred BIOS images to be used to play the game. If more than one BIOS image is indicated as preferred and the original BIOS is one of the preferred images, then the original BIOS image should be used if possible. If more than one BIOS image is indicated as preferred and neither preferred BIOS is the original, then any of the preferred BIOS images should be used if possible.

If none of the preferred BIOS images are available, then the emulator may use any of the compatible BIOS images.

Incompatible BIOS images are images with which the game will not function correctly.

If no bios image compatibility records exist, the emulator should assume that the original bios image is preferred and all other bios images are incompatible.

2.2.3 EmulatorRecords (see Appendix A)

Emulator records are set aside to carry information specific to each emulator. The format of the record is determined by the emulator author. The Record ID of an Emulator Record is the Emulator ID associated with the desired emulator. All currently known Emulator IDs are listed in Appendix A.

2.2.4 Name (0x5ECC1C53)

This record specifies the name of the game contained in this file. There should be only one Name record.

	Offset
	Size
	Description

	0
	String
	Name of the Game

2.2.5 Peripheral Compatibility (0xAE4CEDB7)

One or more Peripiheral Compatibility records describe whether each peripheral is required, optional, unused, or incompatible. See Appendix C for a list of known peripherals associated with each system.

	Offset
	Size
	Description

	0
	4
	Peripheral ID

	1
	1
	Compatibility

Only the lower 2 bits are used

(00=required, 01=optional, 10=compatible, 11=incompatible)

If no peripheral compatibility records exist, the emulator should assume a default peripheral configuration.

Required peripherals must be connected to the system for the game to function at all. For most systems, the main console of the system (peripheral #0) is always considered a required peripheral regardless of any peripheral compatibility records which may specifiy otherwise.

Optional peripherals are used by the game if they are present, but the game will still function in some playable form without them.

Compatible peripherals are not used by the game, but the game will still function if the peripheral is present.

Incompatible peripherals must not be connected to the system or the game will not function.

2.2.6 Producer (0x86596370)

This record specifies the producer of the game contained in this file. There should be only one Producer record.

	Offset
	Size
	Description

	0
	String
	Name of the Producer

2.2.7 RAM Record (0xCF1DC943)

RAM records specify sections of expansion RAM units required for the game to play correctly. These records should never include RAM that is already included in the main console or a peripheral of the system.

	Offset
	Size
	Description

	0
	1
	Flags

7: 0=read address fully decoded

 1=read address partially decoded

6: 0=write address fully decoded

 1=write address partially decoded

5: 0=not banked 1=banked

4: <unused>

3-0: address byte width (1-16)

	1
	1
	Flags

7: <unused>

6-0: data bit width (1-128)

	2
	Address
	Address location of RAM

	.
	Address
	Size of RAM (up to max size of address space)

	.
	Data
	Reset Value

	.
	Address
	Address decoding mask for reads (only if reads are partially decoded). This will determine the number and location of read aliases for this RAM unit. Only used if address reads are not fully decoded by the RAM unit. All ones indicates the address is fully decoded on reads. All zeroes indicates that this RAM has no readable locations.

	.
	Address
	Address decoding mask for writes (only if writes are partially decoded). This will determine the number and location of write aliases for this RAM unit. Only used if address writes are not fully decoded by the RAM unit. All ones indicates the address is fully decoded on writes. All zeroes indicates that this RAM has no writeable locations.

	.
	Array of Banking Descriptors
	Banking Descriptors (only if banked)

2.2.8 ROM Record (0xA365AF69)

One or more ROM Image records provide the images of the ROMs required to play the game.

	Offset
	Size
	Description

	0
	1
	Flags

7: 0=read address fully decoded

 1=read address partially decoded

6: 0=uncompressed 1=compressed (zlib)

5: 0=not banked 1=banked

4: <unused>

3-0: address byte width (1-16)

	1
	1
	Flags

7: <unused>

6-0: data bit width (1-128)

	2
	Address
	Address location of ROM

	.
	Array of Data (uncompressed) or Array of Bytes (zlib compressed data)
	ROM Image

	.
	Address
	Address decoding mask for reads (only if reads are partially decoded). This will determine the number and location of read aliases for this RAM unit. Only used if address reads are not fully decoded by the RAM unit. All ones indicates the address is fully decoded on reads. For consistency, all zeroes indicates that this ROM has no readable locations, although that would make this a pretty useless ROM.

	.
	Array of Banking Descriptors
	Banking Descriptors (only if banked)

2.2.9 Year (0x9199748D)

This record specifies the year the game contained in this file was published. There should be only one Year record.

	Offset
	Size
	Description

	0
	String (2.3.3)
	Year

Concepts

This section is intended to discuss some hardware concepts which may be unfamiliar to some developers who wish to utilize the RIP file format. Since this file format is intended to be comprehensive in order to support all emulators, there are many concepts included herein which do not apply to every emulator. Each of these concepts is discussed in detail below so that you may decide whether this concept applies to you and your particular project.

2.3 Partial Address Decoding

If you’ve written code for an emulator, it’s possible you’ve already discovered a situation where a single memory unit is accessible at more than a single range of memory addresses.

2.4 Banking

2.5 Memory Overlaps

3 Appendix A - Table of Emulator IDs

	Emulator
	ID

	Bliss
	0xC0ABF049

Appendix B - Table of System, Peripheral and BIOS IDs

	System
	Peripheral
	BIOS Types
	BIOS Images

	Atari 5200

(0xE4453A0B)
	Main Console

(0)
	BIOS

(0)
	Original (Atari)

(0)

	Intellivision

(0x4AC771F8)
	Master Component

(0)
	Executive ROM

(0)
	Original (Mattel)

(0)

	
	
	
	Intellivision 2 (Mattel)

(1)

	
	
	
	Sears

(2)

	
	
	
	GPL (Joe Zbiciak)

(3)

	
	
	GROM

(1)
	Original (Mattel)

(4)

	
	
	
	GPL (Joe Zbiciak)

(5)

	
	ECS Keyboard

(1)
	BIOS

(2)
	Original (Mattel)

(6)

	
	Intellivoice

(2)
	BIOS

(3)
	Original (Mattel)

(7)

	
	
	
	GPL (Joe Zbiciak)

(8)

